Potassium Chloride is a potassium salt indicated for the treatment and prophylaxis of hypokalemia with or without metabolic alkalosis, in patients for whom dietary management with potassium-rich foods or diuretic dose reduction is insufficient.

1. INDICATIONS AND USAGE

Potassium Chloride is indicated for the treatment and prophylaxis of hypokalemia with or without metabolic alkalosis, in patients for whom dietary management with potassium-rich foods or diuretic dose reduction is insufficient.

2. DOSAGE AND ADMINISTRATION

2.1 Administration and Monitoring

If serum potassium concentration is <2.5 mEq/L, use intravenous potassium instead of oral supplementation.

Monitoring

Monitor serum potassium and adjust dosages accordingly. For treatment of hypokalemia, monitor potassium levels daily or more often depending on the severity of hypokalemia until they return to normal. Monitor potassium levels monthly to bimonthly for maintenance or prophylaxis.

The treatment of potassium depletion, particularly in the presence of cardiac disease, renal disease, or acidosis requires careful attention to acid-base balance, volume status, electrolytes, including magnesium, sodium, chloride, phosphate, and calcium, electrocardiograms and the clinical status of the patient. Correct volume status, acid-base balance and electrolyte deficits as appropriate.

Administration

Dilute the potassium chloride for oral solution with at least 4 ounces of cold water [see Warnings and Precautions (5.1)]. Take with meals or immediately after eating.

2.2 Adult Dosing

Treatment of hypokalemia:

Daily dose range from 40 to 100 mEq. Give in 2 to 5 divided doses: limit doses to 40 mEq per dose. The total daily dose should not exceed 200 mEq in a 24 hour period.

Maintenance or Prophylaxis

Typical dose is 20 mEq per day. Individualize dose based upon serum potassium levels. Studies support the use of potassium replacement in digitalis toxicity. When alkalosis is present, normokalemia and hyperkalemia may obscure a total potassium deficit. The advisability of use of potassium replacement in the setting of hyperkalemia is uncertain.

2.3 Pediatric Dosing

Treatment of hypokalemia:

Pediatric patients aged birth to 16 years old: The initial dose is 2 to 4 mEq/kg/day in divided doses; do not exceed as a single dose 1 mEq/kg or 40 mEq, whichever is lower; maximum daily doses should not exceed 100 mEq. If deficits are severe or ongoing losses are great, consider intravenous therapy.

Maintenance or Prophylaxis

Pediatric patients aged birth to 16 years old: Typical dose is 1 mEq/kg/day. Do not exceed 3 mEq/kg/day.

3. DOSAGE FORMS AND STRENGTHS

Each pouch contains 1.5 g of potassium chloride supplying 20 mEq of potassium and 20 mEq of chloride.

4. CONTRAINDICATIONS

Potassium Chloride is contraindicated in patients on potassium sparing diuretics.

5. WARNINGS AND PRECAUTIONS

5.1 Gastrointestinal Irritation

Typical dose is 20 mEq per day. Do not exceed 3 mEq/kg/day.

6. ADVERSE REACTIONS

6.1 Mechanism of Action

Animal reproductive studies have not been conducted with potassium chloride. It is unlikely that potassium supplementation that does not lead to hyperkalemia would have an adverse effect on the fetus or would affect reproductive capacity.

8.1 Pregnancy

Pregnancy Category C

Animal reproductive studies have not been conducted with potassium chloride. It is unlikely that potassium supplementation that does not lead to hyperkalemia would have an adverse effect on the fetus or would affect reproductive capacity.
8.2 Nursing Mothers
The normal potassium ion content of human milk is about 13 mEq per liter. Since oral potassium becomes part of the body potassium pool, so long as body potassium is not excessive, the contribution of potassium chloride supplementation should have little or no effect on the level in human milk.

8.3 Pediatric Use
Clinical trial data from published literature have demonstrated the safety and effectiveness of potassium chloride in children with diarrhea and malnutrition from birth to 18 years.

8.4 Geriatric Use
Clinical studies of Potassium Chloride did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

8.5 Cirrhotics
Patients with cirrhosis should usually be started at the low end of the dosing range, and the serum potassium level should be monitored frequently. See Clinical Pharmacology (12.3).

8.6 Renal Impairment
Patients with renal impairment have reduced urinary excretion of potassium and are at substantially increased risk of hyperkalemia. Patients with impaired renal function, particularly if the patient is on ACE inhibitors, ARBs, or nonsteroidal anti-inflammatory drugs, should usually be started at the low end of the dosing range because of the potential for development of hyperkalemia. The serum potassium level should be monitored frequently. Renal function should be assessed periodically.

10 OVERDOSAGE
10.1 Symptoms
The administration of oral potassium salts to persons with normal excretory mechanisms for potassium rarely causes serious hyperkalemia. However, if excretory mechanisms are impaired or if potassium is administered too rapidly potentially fatal hyperkalemia can result.

Hyperkalemia is usually asymptomatic and may be manifested only by an increased serum potassium concentration (6.5–8.0 mEq/L) and characteristic electrocardiographic changes (peaking of T-waves, loss of P-waves, depression of S-T segment, and prolongation of the QT-interval). Late manifestations include muscle paralysis and cardiovascular collapse from cardiac arrest (9–12 mEq/L).

10.2 Treatment
Treatment measures for hyperkalemia include the following:

1. Monitor closely for arrhythmias and electrolyte changes.
2. Eliminate foods and medications containing potassium and of any agents with potassium-sparing properties such as potassium-sparing diuretics, ARBs, ACE inhibitors, NSAIDS, certain nutritional supplements and many others.
3. Administer intravenous calcium gluconate if the patient is at no risk or low risk of developing digitalis toxicity.
4. Administer intravenously 300 to 500 mL/hr of 10% dextrose solution containing 10 to 20 units of crystalline insulin per 1000 mL.
5. Correct acidosis if present, with intravenous sodium bicarbonate.
6. Use exchange resins, hemodialysis, or peritoneal dialysis.

In patients who have been stabilized on digitalis, too rapid a lowering of the serum potassium concentration can produce digitalis toxicity.

11 DESCRIPTION
Potassium Chloride is a white crystalline or colorless solid. It is soluble in water and slightly soluble in alcohol. Chemically, Potassium Chloride is K-Cl with a molecular mass of 74.55.

Each pouch of light pink to orange powder contains 1.5 g of potassium chloride, USP, which is equivalent to potassium 20 mEq and chloride 20 mEq.

20 mEq NDC# 64950-321-20 pouch. Each pouch contains 1.5 g of potassium chloride providing potassium 20 mEq and chloride 20 mEq.

NDC# 64950-321-30 carton of 30 pouches

NDC# 64950-321-01 carton of 100 pouches

Storage
Store at Controlled Room Temperature, 25°C (77°F); excursions are permitted to 15° - 30°C (59° - 86°F). Dispense in a tight, light-resistant container as defined in the USP PROTECT from LIGHT.

Rx only
Manufactured by Lehigh Valley Technologies, Inc. Allentown, PA 18102

PROTECT from LIGHT.